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Abstract
Although the interactions between soil moisture (SM) and vegetation dynamics have been
extensively investigated, most of previous findings are derived from satellite-observed and/or
model-simulated SM data, which inevitably include multiple sources of error. With the effort of
many field workers and researchers in in-situ SM measurement and SM data integration, it is now
possible to obtain the integrated in-situ SM dataset in the global range. Here we used the in-situ
SM dataset of the International Soil Moisture Network to analyze the anomaly correlation between
SM and leaf area index (LAI). We found that positive (negative) correlations exist between SM
(LAI) and temporally lagged LAI (SM). The peak correlation and lagging time to reach it (often less
than 3 months) depends on climate, land cover and rooting depths. The high SM-LAI anomaly
correlation prevails in water-limited regions, e.g. dryland, where plant physiology has strong
sensitivity to subsurface water stress. Dynamics of vegetation with deeper maximum rooting
depths are not always correlated with SM in deeper soil layers, and vegetation dynamics with
shallower maximum rooting depth may strongly correlate with SM in deeper soil layers. Overall,
we highlight the potential of the global in-situ SM observation network to analyze the interactions
between SM and vegetation dynamics.

1. Introduction

Vegetation dynamics has an important role in chan-
ging the climate. Over half of the global vegeta-
tion dynamics are accounted by hydrological pro-
cesses, especially over drier regions (Heimann and
Reichstein 2008, Chen et al 2014). Specifically, soil
moisture (SM) can directly associate with vegetation
dynamics and shape the local-scale vegetation distri-
bution (Miralles et al 2010). The interaction between
SM and vegetation dynamics is crucially important in
numerous aspects (Van der Molen et al 2011, Bolten
andCrow 2012) such as droughtmonitoring (Mo et al
2011, Hao et al 2014, Sawada 2018), cropland secur-
ity (Bolten et al 2010, Asoka and Mishra 2015), land
carbon cycles (Trugman et al 2018) as well as climate
modeling (Dirmeyer et al 2018, Gallego-Elvira et al
2019). One critical feature of the SM-vegetation inter-
action is the time lag effect, i.e. local SM (vegetation)

might have a stronger connection with the tempor-
ally lagged vegetation (SM) (Adegoke and Carleton
2002, Ji and Peters 2003, Vicente-Serrano et al 2013).
In the light of it, some early warning systems have
been built tomonitor drought and vegetation growth,
so as tominimize losses in food production and better
manage water resources during the stress conditions
(Funk and Brown 2006, Asoka and Mishra 2015).
Nevertheless, at the global scale, the knowledge on the
relevance, timing, and conditions regulating the SM-
vegetation interactions is still lacking.

Owing to the merits of their extensive spatial-
temporal coverage, high availability and affordabil-
ity, the current analyses on the correlation between
SM and vegetation are mostly derived from satellite
observation and/or numerical simulation of land sur-
face models (Seddon et al 2016, Madani et al 2017,
Stocker et al 2018, Walther et al 2019, Stocker et al
2020, Li et al 2021). However, nonnegligible biases
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are included in satellite observation and land surface
models. On the one hand, satellite sensors operate at
coarse spatiotemporal resolutions, which inevitably
interferes the accurate SM measurement (Srivastava
et al 2013, Dorigo et al 2017). In addition, only few
centimeters’ sensing depth of satellite sensors makes
it difficult to detect SM in the deep soil layer (Ulaby
1982, Albergel et al 2008, Brocca et al 2011, Dorigo
et al 2015). On the other hand, the land surface mod-
els have been widely recognized to suffer from the
uncertainty in model parameters, model structure
and forcing data, which degrades the accuracy of the
SM estimation (Vrugt and Sadegh 2013, Dumedah
and Walker 2014, Fang et al 2016).

In contrast, in-situ SM observation has relat-
ively limited bias, especially in small spatial scales
(Famiglietti et al 2008, Gruber et al 2013). In many
in-situ SM observation sites, the subsurface SM data
can be obtained (e.g. from surface to 1–2 meters in
the soil), where water amount variation and rooting
dynamics are active. While the satellite-observation
can only infer them from surface SM, the in-situ
observations can directly ‘see’ the critical dynam-
ics. With the rapid growth of ground-based observa-
tion networks, the in-situ SM data are recently bet-
ter maintained and organized in the global scale than
in the past (Dorigo et al 2011, 2021), covering a
wide range of climate and land cover regions. Des-
pite the varying quality, spatial sampling densities,
and uneven overall distribution of in-situ SM stations
over the globe (Babaeian et al 2019), it provides a
unique opportunity for the SM and vegetation correl-
ation analysis in different soil depths and under vari-
ous conditions.

Despite a lot of efforts in analyzing the SM-
vegetation interaction at the global range, no stud-
ies fully used the high potential of the global in-situ
SM observation network. We aim to quantify the rel-
evance, timing, and conditions regulating the SM-
vegetation interactions at near-global range using in-
situ SM observations. Thus, in this paper we will
answer the following scientific questions: In a near-
global range, (a) How does the in-situ observed SM
correlate with leaf area index (LAI) when the time-
lagged effect is considered? (b) How different the in-
situ observation-based SM-LAI anomaly correlations
are in the different soil depths? (c) How different
are the correlations across different climate and land
cover conditions, and ecosystems with different root-
ing depths?

2. Data andmethods

2.1. Data
2.1.1. SM and LAI data
In this study, the in-situ SM data of the Interna-
tional Soil Moisture Network (ISMN) were used
(Dorigo et al 2011, 2021). In ISMN, the in-situ SM

measurements from operational networks and val-
idation campaigns are collected, harmonized, and
made available after quality examination. The ISMN’s
hourly observed SM record, which spans from 1952
to present, includes 2678 stations in 65 networks over
the globe. Figure 1 shows the global available stations
and networks during 2000–2015.

As a proxy of vegetation dynamics, the LAI data
are derived from the globally re-processed moderate-
resolution imaging spectroradiometer (MODIS)
dataset by Ichii et al (2017). In the processed dataset,
the MODIS LAI data are retrieved every 8 d ranging
from 2000 to 2015, with spatial resolutions of ranging
from 500 m to 30 km.

2.1.2. Climate and land cover maps
To analyze the spatial distribution of the SM-LAI cor-
relation, we classified the in-situ SM stations into dif-
ferent groups based on climate and land cover maps.

We used the Koppen-Geiger climate map of the
present day (1980–2016), which includes up to 30 cli-
mate classes (Beck et al 2018). The 4 broad definitions
of climate classifications, i.e. humid, temperate, dry
and cold were considered for analysis, so as to include
the sufficient number of the in-situ SM observations
in each climate classification.

For land cover types, we used the yearly land cover
map of the International Geosphere-Biosphere Pro-
gramme (IGBP) class fromMODIS (Friedl and Sulla-
Menashe 2015). We selected the land cover map in
2008 since it is in the middle of our study period
(2000–2015). Despite the fine classification scheme in
the original map (16 land cover types), the in-situ SM
stations were classified into the five broad land cover
groups: forest, savanna, shrub, grass and crop.

2.2. Method
2.2.1. Quality control
Although the in-situ SM data in ISMN have been
carefully examined, additional quality control was
performed to investigate the long-term interactions
between SM and LAI. To have sufficient SM and LAI
data points for comparison, in-situ SM observations
were used only if completely continuous SM timeser-
ies lasted for longer than 5 years in the study period
(2000–2015). As a result of quality control, data dura-
tion longer than 10 years exists in approximately half
of the total grid cells (figure 1).

2.2.2. Grid map coordination
Since MODIS LAI is the grid-based data and the
ISMN in-situ SM is the point-based data, they are
not straightforward to be directly compared. How-
ever, many studies found that in-situ SM observation
can, to some extent, represent its surrounding SM
condition (Brocca et al 2007, Famiglietti et al 2008,
Brocca et al 2010, 2012,). For the SM-LAI compar-
ison, the in-situ SM data have been upscaled to match
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Figure 1. Global distribution of available grid cells over four soil layers for the SM-LAI interaction analysis, with a close-up view
of the densely clustered grid cells in North America (there are no valid cells in South America). Data duration in each cell is
represented by the depth of red color. In each soil layer, inset bar plot shows the grid cell number in 2 categories: data duration
ranging (a) from 5 to 10 years and (b) from 10 to 15 years.

the grid-based LAI data by (a) defining a global grid-
ded map that corresponds to the coordinate system
of the LAI data, (b) assigning each in-situ SM obser-
vation station to its nearest grid cell and (c) calculat-
ing the grid-averaged in-situ SM as the representative

value for each grid cell, if there are a plural number
of stations in the specific cell. Here in-situ SM data
are rescaled to the 500 m grid cell, i.e. the highest
spatial resolution of the LAI data, which minimizes
the scaling errors. It has been shown that a single
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in-situ SM station in ISMN has the accurate repres-
entation of areal data with the spatial resolution of up
to 50 kilometers (Nicolai-Shaw et al 2015), which can
therefore be used as a reference for coarse-scale mean
SM (Jackson et al 2010, Albergel et al 2012). Based on
these findings, in-situ SM data upscaled to 500 m res-
olution should have high spatial representativeness
and reliably represent the areal SM in the grid cell.
In total, discarding overlapping grid cells in different
layers, 733 valid cells are generated and available for
subsequent analyses, most of which located in North
America, Europe, Africa and Australia (figure 1).

2.2.3. Soil layer stratification
In ISMN, the measurement depths substantially vary
among observation stations (Dorigo et al 2011). To
analyze the contributions of SM in the different
depths to the SM-LAI interactions, we categorized the
measurement depths of the different stations. Accord-
ing to the measurement depths of the networks in
ISMN, we discretized the subsurface soil profile into
4-layer: 1st layer (0–0.1 m), 2nd layer (0.1–0.5 m),
3rd layer (0.5–1 m) and 4th layer (soil below 1 m).
SM measured at different depths was assigned to
these four corresponding layers. If more than one SM
observations are categorized in a single layer, the aver-
aged SM in each layer was calculated and recognized
as the representative SM value in that layer. Figure 1
shows a sufficient distribution of available in-situ SM
observations in upper soil layers, despite the relatively
small number of observations in the deepest layer
(figure 1(d)).

In addition, we explored how SM-LAI interaction
varies for vegetation with different rooting depths,
i.e. the deepest soil depth reached by the roots of indi-
vidual plant (Schenk and Jackson 2002). The max-
imum depth of root water uptake dataset generated
by Fan et al (2017) was used as the proxy of root-
ing depth. Using an inverse model, Fan et al (2017)
derived the rooting depth by estimating root water-
uptake depths at 1-km global grids with observed
vegetation productivity and atmosphere data, which
highlights the plant-water feedback pathway. The in-
situ SM stations were classified into four groups by
rooting depth, corresponding to the four soil layers
defined earlier.

2.2.4. Time lagged anomaly correlation
To remove seasonal cycles, the anomaly correlation
between SM-LAI was used. Due to the lower dynamic
range of anomalies, the scaling error in the anomaly
correlation is expected to be lower than that in the
absolute values of SM (Gruber et al 2013). The anom-
aly correlation between SM and LAI rSM,LAI was calcu-
lated as follows:

rSM,LAI =

∑T
t=1(SMt − SM)

(
LAIt − LAI

)√∑T
t=1

(
SMt − SM

)2√∑T
t=1

(
LAIt − LAI

)2

where T denotes the length of the temporal range in
8 d, SMt and LAIt denotes 8-daily time-series of nor-
malized SM and LAI anomalies, SM and LAI denotes
multiyear averaged 8 d value of normalized SM and
LAI anomalies, respectively.

Generally, wetter soils can induce greater sub-
sequent vegetation growth while denser vegetation
can lead to greater transpiration and thus less sub-
sequent SM (D’Odorico et al 2007, Wu et al 2015). To
explicitly demonstrate the time lag effect as well as the
simultaneous SM-LAI anomaly correlation, we cal-
culated the anomaly correlation coefficients between
SM and LAI that lagged for n × 8 d (integer n ranges
from 1 to 12). Similarly, we calculated the anom-
aly correlation coefficients between LAI and SM that
lagged for n× 8 d (integer n ranges from 1 to 12). The
SM-LAI anomaly correlation coefficients calculated
under the different lagged times will be compared and
analyzed to reveal themagnitude of the time lag effect.

Further, the Wilcoxon signed-rank test has been
conducted to evaluate the statistical significance of
median value of anomaly correlation at different soil
layers and time lags.

3. Result

Throughout all climate classes and soil layers, there
are substantial differences between the SM-LAI
anomaly correlations when LAI lags behind SM
and those when LAI leads SM (figure 2). In most
cases, there is no significant correlation if the lag time
exceeds 3 months. According to figure 2, the highest
SM-LAI anomaly correlation exists in the dry region
when LAI lags behind, which indicates the strongest
response of vegetation dynamics to SM variation in
the water-limited ecosystems. In temperate and dry
regions, the anomaly correlation reaches peak value
when LAI lags behind SM by 8 d and 16 d, respect-
ively. However, it takes approximately 1 month for
LAI to respond to the advanced variation of SM
in cold regions. In other words, vegetation green-
ing responding to SM changes in temperate and dry
regions needs shorter time than in cold regions. In
addition, when LAI leads SM, strong negative cor-
relation is found in cold regions, which takes about
8 d to reach peak value in upper soil layers. In tem-
perate region, when LAI leads SM, the correlation
shows weak statistical significance despite the suf-
ficient available grid cells in the categories, which
indicates that vegetation growth will less likely cause
SM reduction. For the humid region, the anomaly
correlation shows widespread statistical insignific-
ance in deeper layers and when LAI leads SM, which
is very likely due to the small amount of available
data (figure 2). Generally, figure 2 indicates weaker
SM-LAI anomaly correlation in deeper soil layers
for humid, temperate and cold regions, showing the
primary coupling between vegetation dynamics and
SM in the shallower soil layers.
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Figure 2. SM-LAI anomaly correlation (median value) throughout four simplified climate classes (from Köppen-Geiger climate
classifications), 4 soil layers considering different time lag scenarios is presented as heatmaps (left) and string diagrams (right),
respectively. x axis in two diagrams denotes the temporal length that LAI lead SM in timeseries (negative value means LAI is
temporally lagged). The hatched blocks in heatmap and hollow dots in string diagrams represent statistically insignificant
SM-LAI anomaly correlation with a 95% significance level. The inset bar plots are attached to the heatmaps to show the number
of available grid cells for each soil layer. Since the median value of SM-LAI anomaly correlation is closely fitted to the mean values
(figure S2), we choose median value as the proxy to represent the average correlation. More detail information for the correlation
is shown in figure S2 in the supporting information.

The time lag effect on the SM-LAI anomaly cor-
relation can also be found when the in-situ obser-
vation stations are classified into the five land cover
types (figure 3). The higher SM-LAI anomaly cor-
relation exists in ecosystems of crop and grass (high
correlation in shrub ecosystem are overall statistically
insignificant and will not be discussed here). When
timeseries of LAI lags behind, SM-LAI anomaly cor-
relation has higher peak value and shorter response
time (8 d to 1 month) to reach it in crop and grass
ecosystems than in forest and savanna ecosystems. It
indicates greater sensitivity of vegetation growth to
SM variation in crop and grass ecosystems than that
in forest and savanna ecosystems, especially over shal-
low soil layers. On the other hand, when LAI leads
SM, it takes short time (8–24 d) to reach maximum
negative correlation in most regions except for area
where crop grows. In addition, in the deep soil layer
the response of SM to LAI variation is negative in
forest ecosystems but positive in crop and grass eco-
systems. That is to say, the growth of grass and crop
do not reduce SM in the deep soil layer.

SM-LAI anomaly correlation is also compared
across ecosystems with different vegetation max-
imum root water uptake (figure 4). Vegetation whose
maximum rooting depths is within the 1st soil layers

may primarily uptake SM in the 1st layers. However,
LAI of ecosystems with near surface roots are highly
correlated with SM in the 1st, 2nd and 3rd soil lay-
ers when SM leads LAI by 16 d to 1 month. When
SM lags behind LAI, there is no significant correlation
between them. In general, unlike shallow root vegeta-
tion, in ecosystems with deeper roots LAI can lead to
significant reduction in SM across upper layers. Nev-
ertheless, the growth of deep root vegetation is less
sensitive to SM variation when SM leads.

We further compare SM-LAI anomaly correlation
across four climate classes and ecosystems with dif-
ferent vegetation rooting depths to reveal their dif-
ferences in different time lags (figures 5 and S5). In
temperate region, when LAI lags behind, it shows
stronger positive anomaly correlations in the shal-
low root ecosystems than in the deep root ecosystems,
especially for surface SM. In cold region, the growth
of vegetation with deeper root has stronger negative
impacts on subsequent SM by consuming more sub-
surface water resources. This trend is pronounced for
shallow SM, while in deep soil layer the vegetation
growth and SM variation shows little relevance due
to the statistical insignificance. Deep root vegetation
is dominant in dry region (figure S6). The growth
of deep root vegetation positively correlates with SM
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Figure 3. Same as figure 2 but for five simplified land cover types. Detail information about the correlation is shown in figure S3
in the supporting information.

across different soil layers when LAI lags behind SM,
especially in upper layer. Similar to temperate region,
vegetation growth has little impact in SM reduction in
dry region, indicating a less important role of vegeta-
tion growth in influencing SM variation there.

4. Discussion

This study reveals the SM-LAI interaction in vari-
ous climate and land cover regions. Even though
the in-situ SM sites are unevenly distributed in the
globe (many of them are located in North Amer-
ica), the validity of the results is less affected because
of their sufficient coverage of a wide variety of cli-
mates and land covers (figures 2–4). Based on the
in-situ SM observations, the SM-LAI anomaly cor-
relations found in our analyses are dominant with
short time lag, which is in line with the published
knowledge of regional studies (Adegoke and Carleton
2002, Ji and Peters 2003, Musyimi 2011, Chen et al
2014, Asoka and Mishra 2015, Sawada 2018). Our
finding is also consistent to Miguez-Macho and Fan
(2021), who clarified that nearly 90% of plant tran-
spiration rely on the current month and pre-month
atmospheric water input. In addition, the highest

SM-LAI anomaly correlation is found in the drier
region because plant physiology has strong sensitiv-
ity to subsurface water stress under moisture-limited
conditions (Stocker et al 2018, 2020, Jiao et al 2021).
Further, SM variation can significantly influence the
growth of vegetation with small biomass such as grass
and crop, while large biomass plant like tree and
savanna tends to consume more subsurface water
to sustain its growth above ground (figure 3). The
results confirm the different strategy towards SM
variation adopted by herbaceous and woody veget-
ations (Anderegg et al 2019, Carminati and Javaux
2020). Nevertheless, despite the consistencies, some
critical questions in the SM-LAI interaction remain
unanswered by previous works.

Existing studies mainly addressed the SM-LAI
interaction at the monthly scale, and the temporal
extent of the response time in the SM-LAI interac-
tion has not yet been fully clarified. We find that in
temperate and dry regions, vegetation dynamics can
quickly respond to SM variation in upper soil layer
in as short as 8 and 16 d, respectively (figure 2).
This study also thoroughly compares between the
asymmetric responses of SM to LAI and LAI to
SM, whereas previous studies mainly investigated
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Figure 4. Same as figure 2 but for ecosystems of 4 vegetation rooting depths. Detail information about the correlation is shown in
figure S4 in the supporting information.

Figure 5. The SM-LAI anomaly correlation (median value) throughout four simplified climate classes, four soil layers considering
different time lag scenarios is presented as heatmaps for the ecosystems of four vegetation rooting depths. x axis of heatmap
denotes the temporal length that LAI lead SM in timeseries (negative value means LAI is temporally lagged). The hatched blocks
represent statistically insignificant SM-LAI anomaly correlation with a 95% significance level. Missing tiles in heatmap means
zero sample point in the categories. The string diagrams of the correlation and the bar plots showing the number of available grid
cells for each soil layer are shown in figures S5 and S6 in the supporting information, respectively.
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the effect of anomalous SM variation on vegetation
growth (Chen et al 2014, Asoka and Mishra 2015).
Our results indicate that vegetation growth will lead
to quick (8–24 d) reduction in subsurface water for
cold climate. On the other hand, there is no signific-
ant SM reduction in regions such as temperate area.
Another finding is the quicker response of vegetation
to SM in temperate and dry regions than that in cold
regions (figure 2). This is probably because low tem-
perature in cold regions freezes SM and prolongs the
response time (Beck et al 2018, Li et al 2021).

By fully leveraging in-situ SM data synthesis, the
straightforward comparison between SM-LAI coup-
ling and estimated plant rooting depth could be
implemented. The dominant vegetation type in arid
region of our ISMN sites commonly has deeper root
(figure 5), so previous studies revealed that they can
easily tap into soil water in deep soil layers to adapt to
the water scarce condition on surface (Neill et al 2013,
Fan et al 2017, Li et al 2021). This study shows that
they consume subsurface water in upper soil layers
more often. This might be because some vegetation
biomes have a larger portion of roots in the shallower
depth than themaximum rooting depth (Jackson et al
1996), so that there is stronger SM-LAI coupling in
shallower soil layers. Figure 4 shows the strong anom-
aly correlation between LAI and SM in subsurface soil
layers even for shallow root vegetation. This can be
expected as many empirical evidences point out that
surface SM are typically correlated to some degree
with changes in subsurface SM (Albergel et al 2008,
Short Gianotti et al 2019).

Actually, the satellite and in-situ SM data are dif-
ferent inmanymanners such as extent, depth and pre-
ciseness and hence do not measure the same water
volume (Gruber et al 2013, McColl et al 2014, Gruber
et al 2020). Although previous works on the SM and
vegetation interactions relied on satellite observed
and/or model simulation data, we open the door to
use the in-situ SM data to analyze the interactions.

In the meanwhile, the scaling error caused by
aligning point-based SM to grid-based LAI data may
still, to some extent, dampen the analyses (Gruber
et al 2013). To enhance the validity of the conclu-
sion, more sophisticated upscaling method is expec-
ted in the future as an avenue to minimize the scaling
error.

5. Conclusions

Here we analyze the interactions between SM and
vegetation dynamics in the near-global scale by max-
imizing the potential of the existing in-situ SM obser-
vation networks. The in-situ SM data from world-
wide available networks organized by ISMN are used
to analyze the anomaly correlation between SM and
LAI. We reveal how the interaction between SM and
LAI differs in different climate, land cover conditions,

and vegetation rooting depths. To sum up, our results
indicate that:

(a) SM or LAI can respond to their counterpart’s
variation when it lags by a relatively short term,
but they can hardly respond to changes with a lag
of more than three months.

(b) Generally, the highest SM-LAI anomaly correla-
tion is found in the region with dry climate.

(c) Dynamics of vegetation with deep root is not
always correlated with SM near rooting depth
and it may consume SM from upper soil layers,
and shallow root vegetation may strongly correl-
ate with SM from deeper layers.

Under the continuous impact of climate change,
the spatial distribution of climate and land cover clas-
sifications is assumed to be changed in the coming
century (Beck et al 2018). It is also predicted that dry-
ing trend will continuously dominate and amplify cli-
mate change impact (Deng et al 2020, Li et al 2022).
The pattern of the SM-LAI interaction in different
regions is expected to change due to the shift in cli-
mate and land cover types. In this context, our res-
ults not only provide critical insights into the rela-
tionship between SM and vegetation dynamics but
also useful benchmark for future large-scalemodeling
studies.

Data availability statement

The ISMN in-situ SM data are, after registration
of an account in the platform, freely accessible
through www.geo.tuwien.acat/insitu/data_viewer/.
The MODIS LAI data are obtained from
ftp://modis.cr.chiba-u.acjp/ichii/DATA/MODIS/GLO
BAL/tmp/. The Koppen-Geiger climate map is avail-
able at www.gloh2o.org/koppen/. The IGBP land
cover map is available at https://e4ftl01.cr.usgs.gov/
MOTA/MCD12C1.006/2008.01.01/. The maximum
rooting depth data are available from https://wci.
earth2observe.eu/thredds/catalog/usc/root-depth/
catalog.html. The processed data are available at
https://doi.org/10.5281/zenodo.6815593. All links are
valid as of Oct 14th, 2022.

The data that support the findings of this study
are openly available at the following URL/DOI: www.
geo.tuwien.ac.at/insitu/data_viewer, https://doi.org/
10.5281/zenodo.6815593.
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